失效链接处理 |
Greenplum性能测试报告 PDF 下载
本站整理下载:
提取码:c6a6
相关截图:
主要内容:
测试目的
本测试报告是LINUX平台上,在13.107亿规模的数据量下,Greenplum的查询性能。
一、Greenplum数据库简介
Greenplum(以下简称GPDB)是一款开源数据仓库。基于开源的PostgreSQL改造,主要用来处理大规模数据分析任务,相比Hadoop,Greenplum更适合做大数据的存储、计算和分析引擎。
GPDB是典型的Master/Slave架构,在Greenplum集群中,存在一个Master节点和多个Segment节点,其中每个节点上可以运行多个数据库。
1、特性
1)完善的标准支持:GPDB完全支持ANSI SQL 2008标准和SQL OLAP 2003 扩展;从应用编程接口上讲,它支持ODBC和JDBC。
2)支持分布式事务,支持ACID。保证数据的强一致性。
3)做为分布式数据库,拥有良好的线性扩展能力。在国内外用户生产环境中,具有上百个物理节点的GPDB集群都有很多案例。
4)GPDB是企业级数据库产品,全球有上千个集群在不同客户的生产环境运行。这些集群为全球很多大的金融、政府、物流、零售等公司的关键业务提供服务。
5)GPDB是Greenplum(现在的Pivotal)公司十多年研发投入的结果。GPDB基于PostgreSQL 8.2,PostgreSQL 8.2有大约80万行源代码,而GPDB现在有130万行源码。相比PostgreSQL 8.2,增加了约50万行的源代码。
6)Greenplum有很多合作伙伴,GPDB有完善的生态系统,可以与很多企业级产品集成,譬如SAS,Cognos,Informatic,Tableau等;也可以很多种开源软件集成,譬如Pentaho,Talend 等。
2、Greenplum的几个关键词
Shared Nothing:各个处理单元都有自己私有的CPU/内存/硬盘等,不存在共享资源,各处理单元之间通过协议通信,并行处理和扩展能力更好。各节点相互独立,各自处理自己的数据,处理后的结果可能向上层汇总或在节点间流转。Share-Nothing架构在扩展性和成本上都具有明显优势。
MPP:大规模并行处理系统是由许多松耦合处理单元组成的,借助MPP这种高性能的系统架构,Greenplum可以将TB级的数据仓库负载分解,并使用所有的系统资源并行处理单个查询。
MVCC:与事务型数据库系统通过锁机制来控制并发访问的机制不同, GPDB使用多版本控制(Multiversion Concurrency Control/MVCC)保证数据一致性。 这意味着在查询数据库时,每个事务看到的只是数据的快照,其确保当前的事务不会看到其他事务在相同记录上的修改。据此为数据库的每个事务提供事务隔离。
MVCC以避免给数据库事务显式锁定的方式,最大化减少锁争用以确保多用户环境下的性能。在并发控制方面,使用MVCC而不是使用锁机制的最大优势是, MVCC对查询(读)的锁与写的锁不存在冲突,并且读与写之间从不互相阻塞。
二、Greenplum架构
1、整体架构
数据库由Master Severs和Segment Severs通过Interconnect互联组成。
Master主机负责:建立与客户端的连接和管理;SQL的解析并形成执行计划;执行计划向Segment的分发收集Segment的执行结果;Master不存储业务数据,只存储数据字典。
Segment主机负责:业务数据的存储和存取;用户查询SQL的执行。
|