失效链接处理 |
Web安全之机器学习入门 PDF 下载
转载自:https://www.jb51.net/books/630939.html
本站整理下载:
版权归出版社和原作者所有,链接已删除,请购买正版
用户下载说明:
电子版仅供预览,下载后24小时内务必删除,支持正版,喜欢的请购买正版书籍:
http://product.dangdang.com/25156237.html
相关截图:
资料简介: 本书首先介绍主流的机器学习工具,以及Python应用于机器学习的优势,并介绍Scikit-Learn环境搭建、TensorFlow环境搭建。接着介绍机器学习的基本概念和Web安全基础知识。然后深入讲解几个机器学习算法在Web安全领域的实际应用,如K近邻、决策树、朴素贝叶斯、逻辑回归、支持向量机、K-Means算法、FP-growth、隐式马尔可夫、有向图、神经网络等,还介绍了深度学习算法之CNN、RNN。本书针对每一个算法都给出了具体案例,如使用K近邻算法识别XSS攻击、使用决策树算法识别SQL注入攻击、使用逻辑回归算法识别恶意广告点击、使用K-Means算法检测DGA域名等。本书作者在安全领域有多年开发经验,全书理论结合实际,案例丰富,讲解清晰,适合于有信息安全基础知识的网络开发与运维技术人员参考。 资料目录: 对本书的赞誉 序一 序二 序三 前言 第1章 通向智能安全的旅程 1 1.1 人工智能、机器学习与深度学习 1 1.2 人工智能的发展 2 1.3 国内外网络安全形势 3 1.4 人工智能在安全领域的应用 5 1.5 算法和数据的辩证关系 9 1.6 本章小结 9 参考资源 10 第2章 打造机器学习工具箱 11 2.1 Python在机器学习领域的优势 11 2.1.1 NumPy 11 2.1.2 SciPy 15 2.1.3 NLTK 16 2.1.4 Scikit-Learn 17 2.2 TensorFlow简介与环境搭建 18 2.3 本章小结 19 参考资源 20 第3章 机器学习概述 21 3.1 机器学习基本概念 21 3.2 数据集 22 3.2.1 KDD 99数据 22 3.2.2 HTTP DATASET CSIC 2010 26 3.2.3 SEA数据集 26 3.2.4 ADFA-LD数据集 27 3.2.5 Alexa域名数据 29 3.2.6 Scikit-Learn数据集 29 3.2.7 MNIST数据集 30 3.2.8 Movie Review Data 31 3.2.9 SpamBase数据集 32 3.2.10 Enron数据集 33 3.3 特征提取 35 3.3.1 数字型特征提取 35 3.3.2 文本型特征提取 36 3.3.3 数据读取 37 3.4 效果验证 38 3.5 本章小结 40 参考资源 40 第4章 Web安全基础 41 4.1 XSS攻击概述 41 4.1.1 XSS的分类 43 4.1.2 XSS特殊攻击方式 48 4.1.3 XSS平台简介 50 4.1.4 近年典型XSS攻击事件分析 51 4.2 SQL注入概述 53 4.2.1 常见SQL注入攻击 54 4.2.2 常见SQL注入攻击载荷 55 4.2.3 SQL常见工具 56 4.2.4 近年典型SQL注入事件分析 60 4.3 WebShell概述 63 4.3.1 WebShell功能 64 4.3.2 常见WebShell 64 4.4 僵尸网络概述 67 4.4.1 僵尸网络的危害 68 4.4.2 近年典型僵尸网络攻击事件分析 69 4.5 本章小结 72 参考资源 72 第5章 K近邻算法 74 5.1 K近邻算法概述 74 5.2 示例:hello world!K近邻 75 5.3 示例:使用K近邻算法检测异常操作(一) 76 5.4 示例:使用K近邻算法检测异常操作(二) 80 5.5 示例:使用K近邻算法检测Rootkit 81 5.6 示例:使用K近邻算法检测WebShell 83 5.7 本章小结 85 参考资源 86 第6章 决策树与随机森林算法 87 6.1 决策树算法概述 87 6.2 示例:hello world!决策树 88 6.3 示例:使用决策树算法检测POP3暴力破解 89 6.4 示例:使用决策树算法检测FTP暴力破解 91 6.5 随机森林算法概述 93 6.6 示例:hello world!随机森林 93 6.7 示例:使用随机森林算法检测FTP暴力破解 95 6.8 本章小结 96 参考资源 96 第7章 朴素贝叶斯算法 97 7.1 朴素贝叶斯算法概述 97 7.2 示例:hello world!朴素贝叶斯 98 7.3 示例:检测异常操作 99 7.4 示例:检测WebShell(一) 100 7.5 示例:检测WebShell(二) 102 7.6 示例:检测DGA域名 103 7.7 示例:检测针对Apache的DDoS攻击 104 7.8 示例:识别验证码 107 7.9 本章小结 108 参考资源 108 第8章 逻辑回归算法 109 8.1 逻辑回归算法概述 109 8.2 示例:hello world!逻辑回归 110 8.3 示例:使用逻辑回归算法检测Java溢出攻击 111 8.4 示例:识别验证码 113 8.5 本章小结 114 参考资源 114 第9章 支持向量机算法 115 9.1 支持向量机算法概述 115 9.2 示例:hello world!支持向量机 118 9.3 示例:使用支持向量机算法识别XSS 120 9.4 示例:使用支持向量机算法区分僵尸网络DGA家族 124 9.4.1 数据搜集和数据清洗 124 9.4.2 特征化 125 9.4.3 模型验证 129 9.5 本章小结 130 参考资源 130 第10章 K-Means与DBSCAN算法 131 10.1 K-Means算法概述 131 10.2 示例:hello world!K-Means 132 10.3 示例:使用K-Means算法检测DGA域名 133 10.4 DBSCAN算法概述 135 10.5 示例:hello world!DBSCAN 135 10.6 本章小结 137 参考资源 137 第11章 Apriori与FP-growth算法 138 11.1 Apriori算法概述 138 11.2 示例:hello world!Apriori 140 11.3 示例:使用Apriori算法挖掘XSS相关参数 141 11.4 FP-growth算法概述 143 11.5 示例:hello world!FP-growth 144 11.6 示例:使用FP-growth算法挖掘疑似僵尸主机 145 11.7 本章小结 146 参考资源 146 第12章 隐式马尔可夫算法 147 12.1 隐式马尔可夫算法概述 147 12.2 hello world! 隐式马尔可夫 148 12.3 示例:使用隐式马尔可夫算法识别XSS攻击(一) 150 12.4 示例:使用隐式马尔可夫算法识别XSS攻击(二) 153 12.5 示例:使用隐式马尔可夫算法识别DGA域名 159 12.6 本章小结 162 参考资源 162 第13章 图算法与知识图谱 163 13.1 图算法概述 163 13.2 示例:hello world!有向图 164 13.3 示例:使用有向图识别WebShell 169 13.4 示例:使用有向图识别僵尸网络 173 13.5 知识图谱概述 176 13.6 示例:知识图谱在风控领域的应用 177 13.6.1 检测疑似账号被盗 178 13.6.2 检测疑似撞库攻击 17 |