失效链接处理 |
clickhouse中文版 PDF 下载
本站整理下载:
相关截图:
主要内容:
输入/输出 1. 针对分析类查询,通常只需要读取表的一小部分列。在列式数据库中你可以只读取你需要的数据。例如,如果只需要读取100列中的5列,这将帮助你最少减少20倍的I/O消 耗。 2. 由于数据总是打包成批量读取的,所以压缩是非常容易的。同时数据按列分别存储这也更容易压缩。这进一步降低了I/O的体积。 3. 由于I/O的降低,这将帮助更多的数据被系统缓存。 例如,查询«统计每个广告平台的记录数量»需要读取«广告平台ID»这一列,它在未压缩的情况下需要1个字节进行存储。如果大部分流量不是来自广告平台,那么这一列至少可以 以十倍的压缩率被压缩。当采用快速压缩算法,它的解压速度最少在十亿字节(未压缩数据)每秒。换句话说,这个查询可以在单个服务器上以每秒大约几十亿行的速度进行处理。 这实际上是当前实现的速度。 CPU 由于执行一个查询需要处理大量的行,因此在整个向量上执行所有操作将比在每一行上执行所有操作更加高效。同时这将有助于实现一个几乎没有调用成本的查询引擎。如果你不 这样做,使用任何一个机械硬盘,查询引擎都不可避免的停止CPU进行等待。所以,在数据按列存储并且按列执行是很有意义的。 有两种方法可以做到这一点: 1. 向量引擎:所有的操作都是为向量而不是为单个值编写的。这意味着多个操作之间的不再需要频繁的调用,并且调用的成本基本可以忽略不计。操作代码包含一个优化的内 部循环。 2. 代码生成:生成一段代码,包含查询中的所有操作。 这是不应该在一个通用数据库中实现的,因为这在运行简单查询时是没有意义的。但是也有例外,例如,MemSQL使用代码生成来减少处理SQL查询的延迟(只是为了比较,分析 型数据库通常需要优化的是吞吐而不是延迟)。 请注意,为了提高CPU效率,查询语言必须是声明型的(SQL或MDX), 或者至少一个向量(J,K)。 查询应该只包含隐式循环,允许进行优化。 来源文章 入门如果您是ClickHouse的新手,并希望亲身体验它的性能。 首先需要进行 环境安装与部署. 之后,您可以通过教程与示例数据完成自己的入门第一步: QuickStart教程 快速了解Clickhouse的操作流程 示例数据集-航班飞行数据 示例数据,提供了常用的SQL查询场景 来源文章 安装系统要求 ClickHouse可以在任何具有x86_64,AArch64或PowerPC64LE CPU架构的Linux,FreeBSD或Mac OS X上运行。 官方预构建的二进制文件通常针对x86_64进行编译,并利用SSE 4.2指令集,因此,除非另有说明,支持它的CPU使用将成为额外的系统需求。下面是检查当前CPU是否支持SSE 4.2的命令: $ grep -q sse4_2 /proc/cpuinfo && echo "SSE 4.2 supported" || echo "SSE 4.2 not supported" 要在不支持SSE 4.2或AArch64,PowerPC64LE架构的处理器上运行ClickHouse,您应该通过适当的配置调整从源代码构建ClickHouse。 可用安装包 |