Java知识分享网 - 轻松学习从此开始!    

Java知识分享网

Java1234官方群25:java1234官方群17
Java1234官方群25:838462530
        
SpringBoot+SpringSecurity+Vue+ElementPlus权限系统实战课程 震撼发布        

最新Java全栈就业实战课程(免费)

springcloud分布式电商秒杀实战课程

IDEA永久激活

66套java实战课程无套路领取

锋哥开始收Java学员啦!

Python学习路线图

锋哥开始收Java学员啦!
当前位置: 主页 > Java文档 > 大数据云计算 >

零基础学大数据算法 PDF 下载


分享到:
时间:2019-09-02 10:19来源:http://www.jb51.net/(脚本之家 作者:转载  侵权举报
零基础学大数据算法 PDF 下载
失效链接处理
零基础学大数据算法 PDF 下载

转载自:https://www.jb51.net/books/690828.html
 
本站整理下载:
版权归出版社和原作者所有,链接已删除,请购买正版
 
 
用户下载说明:
电子版仅供预览,下载后24小时内务必删除,支持正版,喜欢的请购买正版书籍:
http://product.dangdang.com/23995992.html
  
相关截图:
 
资料简介:
本书是通俗易懂的大数据算法教程。通篇采用师生对话的形式,旨在用通俗的语言、轻松的气氛,帮助读者理解大数据计算领域中的基础算法和思想。本书由背景篇、理论篇、应用篇和实践篇四部分组成。背景篇介绍大数据、算法、大数据算法等基本概念和背景;理论篇介绍解决大数据问题的亚线性算法、磁盘算法、并行算法、众包算法的基本思想和理论知识;应用篇介绍与大数据问题息息相关的数据挖掘和推荐系统的相关知识;实践篇从实际应用出发,引导读者动手操作,帮助读者通过实际程序和实验验证磁盘算法、并行算法和众包算法。在讲解每一个大数据问题之前,本书都会介绍大量的经典算法和基础数据结构知识,不仅可以帮助学习过数据结构与算法、算法设计与分析等课程的同学复习,同时能够让入门的“小菜鸟”们,不会因为没有学习过经典算法而对本书望而却步,轻松地掌握大数据算法!
 
资料目录:
第1 篇 背景篇
第1 章 何谓大数据 4
1.1 身边的大数据 4
1.2 大数据的特点和应用 6
第2 章 何谓算法 8
2.1 算法的定义 8
2.2 算法的分析 14
2.3 基础数据结构——线性表 24
2.4 递归——以阶乘为例 28
第3 章 何谓大数据算法 31
第2 篇 理论篇
第4 章 窥一斑而见全豹——亚线性算法 34
4.1 亚线性算法的定义 34
4.2 空间亚线性算法 35
4.2.1 水库抽样 35
4.2.2 数据流中的频繁元素 37
4.3 时间亚线性计算算法 40
4.3.1 图论基础回顾 40
4.3.2 平面图直径 45
4.3.3 最小生成树 46
4.4 时间亚线性判定算法 53
4.4.1 全0 数组的判定 53
4.4.2 数组有序的判定 55
第5 章 价钱与性能的平衡——磁盘算法 58
5.1 磁盘算法概述 58
5.2 外排序 62
5.3 外存数据结构——磁盘查找树 71
5.3.1 二叉搜索树回顾 71
5.3.2 外存数据结构——B 树 78
5.3.3 高维外存查找结构——KD 树 80
5.4 表排序 83
5.5 表排序的应用 86
5.5.1 欧拉回路技术 86
5.5.2 父子关系判定 87
5.5.3 前序计数 88
5.6 时间前向处理技术 90
5.7 缩图法 98
第6 章 1 1>2——并行算法 103
6.1 MapReduce 初探 103
6.2 MapReduce 算法实例 106
6.2.1 字数统计 106
6.2.2 平均数计算 108
6.2.3 单词共现矩阵计算 111
6.3 MapReduce 进阶算法 115
6.3.1 join 操作 115
6.3.2 MapReduce 图算法概述 122
6.3.3 基于路径的图算法 125
第7 章 超越MapReduce 的并行计算 131
7.1 MapReduce 平台的局限 131
7.2 基于图处理平台的并行算法 136
7.2.1 概述 136
7.2.2 BSP 模型下的单源最短路径 137
7.2.3 计算子图同构 141
第8 章 众人拾柴火焰高——众包算法 144
8.1 众包概述 144
8.1.1 众包的定义 144
8.1.2 众包应用举例 146
8.1.3 众包的特点 149
8.2 众包算法例析 152
第3 篇 应用篇
第9 章 大数据中有黄金——数据挖掘 158
9.1 数据挖掘概述 158
9.2 数据挖掘的分类 159
9.3 聚类算法——k-means 160
9.4 分类算法——Naive Bayes 166
第10 章 推荐系统 170
10.1 推荐系统概述 170
10.2 基于内容的推荐方法 173
10.3 协同过滤模型 176
第4 篇 实践篇
第11 章 磁盘算法实践 186
第12 章 并行算法实践 194
12.1 Hadoop MapReduce 实践 194
12.1.1 环境搭建 194
12.1.2 配置Hadoop 201
12.1.3 “Hello World”程序—— WordCount 203
12.1.4 Hadoop 实践案例——记录去重 213
12.1.5 Hadoop 实践案例——等值连接 216
12.1.6 多机配置 221
12.2 适于迭代并行计算的平台——Spark 224
12.2.1 Spark 初探 224
12.2.2 单词出现行计数 230
12.2.3 在Spark 上实现WordCount 236
12.2.4 在HDFS 上使用Spark 241
12.2.5 Spark 的核心操作——Transformation 和Action 244
12.2.6 Spark 实践案例——PageRank 247
第13 章 众包算法实践 251
13.1 认识AMT 251
13.2 成为众包工人 252

 
------分隔线----------------------------

锋哥公众号


锋哥微信


关注公众号
【Java资料站】
回复 666
获取 
66套java
从菜鸡到大神
项目实战课程

锋哥推荐