失效链接处理 |
深入浅出数据科学 PDF 下载
转载自:https://download.csdn.net/psearch/0/10/0/2/1/%E6%B7%B1%E5%85%A5%E6%B5%85%E5%87%BA%E6%95%B0%E6%8D%AE%E7%A7%91%E5%AD%A6
本站整理下载:
版权归出版社和原作者所有,链接已删除,请购买正版
用户下载说明:
电子版仅供预览,下载后24小时内务必删除,支持正版,喜欢的请购买正版书籍:
http://product.dangdang.com/25344400.html
相关截图:
资料简介:
数据科学家是目前热门的职业之一。本书全面介绍了成为合格数据科学家所需的知识、技能和工作流程,是一本内容全面的实用性技术图书。 本书分为13章,其中第1~3章介绍数据科学;第4~8章介绍数学知识,包括统计学和概率论;第9章介绍数据可视化;第10~12章介绍机器学习;第13章介绍案例。各个章节内容均由浅入深,同时通过案例和Python代码,使读者掌握实战技能。 本书适合有志于成为数据科学家的师生或业界新手,同时也适合经验丰富的职场老手参考。
资料目录:
第 1章 如何听起来像数据科学家 1
1.1 什么是数据科学 3 1.1.1 基本的专业术语 3 1.1.2 为什么是数据科学 4 1.1.3 案例:西格玛科技公司 4 1.2 数据科学韦恩图 5 1.2.1 数学 7 1.2.2 计算机编程 8 1.2.3 为什么是Python 9 1.2.4 领域知识 13 1.3 更多的专业术语 14 1.4 数据科学案例 15 1.4.1 案例:自动审核政府文件 16 1.4.2 案例:市场营销费用 17 1.4.3 案例:数据科学家的岗位描述 18 1.5 总结 21 第 2章 数据的类型 23 2.1 数据的“味道” 23 2.2 为什么要进行区分 24 2.3 结构化数据和非结构化数据 24 2.4 定量数据和定性数据 28 2.4.1 案例:咖啡店数据 28 2.4.2 案例:世界酒精消费量 30 2.4.3 更深入的研究 32 2.5 简单小结 33 2.6 数据的4个尺度 33 2.6.1 定类尺度 34 2.6.2 定序尺度 35 2.6.3 定距尺度 37 2.6.4 定比尺度 41 2.7 数据是旁观者的眼睛 42 2.8 总结 43 第3章 数据科学的5个步骤 44 3.1 数据科学简介 44 3.2 5个步骤概览 45 3.2.1 提出有意思的问题 45 3.2.2 获取数据 45 3.2.3 探索数据 45 3.2.4 数据建模 46 3.2.5 可视化和分享结果 46 3.3 探索数据 46 3.3.1 数据探索的基本问题 47 3.3.2 数据集1:Yelp点评数据 48 3.3.3 数据集2:泰坦尼克 56 3.4 总结 60 第4章 基本的数学知识 61 4.1 数学学科 61 4.2 基本的数学符号和术语 62 4.2.1 向量和矩阵 62 4.2.2 算术符号 65 4.2.3 图表 68 4.2.4 指数/对数 69 4.2.5 集合论 71 4.3 线性代数 74 4.4 总结 78 第5章 概率论入门:不可能,还是不太可能 79 5.1 基本的定义 79 5.2 概率 80 5.3 贝叶斯VS频率论 81 5.4 复合事件 84 5.5 条件概率 86 5.6 概率定理 87 5.6.1 加法定理 87 5.6.2 互斥性 88 5.6.3 乘法定理 88 5.6.4 独立性 89 5.6.5 互补事件 89 5.7 再进一步 91 5.8 总结 92 第6章 高等概率论 93 6.1 互补事件 93 6.2 重温贝叶斯思想 94 6.2.1 贝叶斯定理 94 6.2.2 贝叶斯定理的更多应用 97 6.3 随机变量 100 6.3.1 离散型随机变量 101 6.3.2 连续型随机变量 110 6.4 总结 113 第7章 统计学入门 114 7.1 什么是统计学 114 7.2 如何获取数据 115 7.3 数据抽样 118 7.3.1 概率抽样 118 7.3.2 随机抽样 119 7.3.3 不等概率抽样 120 7.4 如何描述统计量 120 7.4.1 测度中心 120 7.4.2 变异测度 121 7.4.3 变异系数 125 7.4.4 相对位置测度 126 7.5 经验法则 132 7.6 总结 134 第8章 高等统计学 135 8.1 点估计 135 8.2 抽样分布 139 8.3 置信区间 142 8.4 假设检验 145 8.4.1 实施假设检验 146 8.4.2 单样本t检验 147 8.4.3 I型错误和II型错误 151 8.4.4 分类变量的假设检验 151 8.5 总结 155 第9章 交流数据 156 9.1 为什么交流数据很重要 156 9.2 识别有效和无效的可视化 157 9.2.1 散点图 157 9.2.2 折线图 159 9.2.3 条形图 160 9.2.4 直方图 162 9.2.5 箱形图 163 9.3 当图表和统计在说谎 166 9.3.1 相关性VS因果关系 166 9.3.2 辛普森悖论 168 9.3.3 如果相关性不等于因果关系,那什么导致了因果关系 169 9.4 语言交流 170 9.4.1 关键在于讲故事 170 9.4.2 正式场合的注意事项 170 9.5 为什么演示、如何演示和演示策略 171 9.6 总结 172 第 10章 机器学习精要:你的烤箱在学习吗 173 10.1 什么是机器学习 173 10.2 机器学习并不完美 175 10.3 机器学习如何工作 176 10.4 机器学习的分类 176 10.4.1 监督学习 177 10.4.2 无监督学习 182 10.4.3 强化学习 183 10.5 统计模型如何纳入以上分类 186 10.6 线性回归 186 10.6.1 增加更多预测因子 191 10.6.2 回归指标 193 10.7 Logistic回归 199 10.8 概率、几率和对数几率 201 10.9 哑变量 206 10.10 总结 210 第 11章 树上无预言,真的吗 212 11.1 朴素贝叶斯分类 212 11.2 决策树 220 11.2.1 计算机如何生成回归树 221 11.2.2 计算机如何拟合分类树 222 11.3 无监督学习 226 11.3.1 无监督学习的使用场景 226 11.3.2 K均值聚类 227 11.3.3 如何选择最佳的K值,并对簇进行评价 233 11.4 特征提取和主成分分析 235 11.5 总结 246 第 12章 超越精要 247 12.1 偏差-方差权衡 247 12.1.1 偏差导致的误差 248 12.1.2 方差导致的误差 248 12.1.3 两种极端的偏差-方差权衡情况 255 12.1.4 偏差-方差如何组成误差函数 256 12.2 K层交叉验证 257 12.3 网格搜索算法 261 12.4 集成技术 266 12.4.1 随机森林 268 12.4.2 随机森林VS决策树 273 12.5 神经网络 274 12.6 总结 279 第 13章 案例 280 13.1 案例1:基于社交媒体预测股票价格 280 13.1.1 文本情感分析 280 13.1.2 探索性数据分析 281 13.1.3 超越案例 294 13.2 案例2:为什么有些人会对配偶撒谎 295 13.3 案例3:初试TensorFlow 301 13.4 总结 311 |