失效链接处理 |
understanding-machine-learning-theory-algorithms PDF 下载 下载地址:
提取码:8jo6
相关截图: 主要内容:
Understanding Machine Learning
Machine learning is one of the fastest growing areas of computer science,
with far-reaching applications. The aim of this textbook is to introduce
machine learning, and the algorithmic paradigms it offers, in a principled way. The book provides an extensive theoretical account of the
fundamental ideas underlying machine learning and the mathematical
derivations that transform these principles into practical algorithms. Following a presentation of the basics of the field, the book covers a wide
array of central topics that have not been addressed by previous textbooks. These include a discussion of the computational complexity of
learning and the concepts of convexity and stability; important algorithmic paradigms including stochastic gradient descent, neural networks,
and structured output learning; and emerging theoretical concepts such as
the PAC-Bayes approach and compression-based bounds. Designed for
an advanced undergraduate or beginning graduate course, the text makes
the fundamentals and algorithms of machine learning accessible to students and nonexpert readers in statistics, computer science, mathematics,
and engineering.
Shai Shalev-Shwartz is an Associate Professor at the School of Computer
Science and Engineering at The Hebrew University, Israel.
Shai Ben-David is a Professor in the School of Computer Science at the
University of Waterloo, Canada.
|