失效链接处理 |
python在机器学习中的应用 PDF 下载
本站整理下载:
版权归出版社和原作者所有,链接已删除,请购买正版
用户下载说明:
电子版仅供预览,下载后24小时内务必删除,支持正版,喜欢的请购买正版书籍:
http://product.dangdang.com/27874149.html
相关截图:
资料简介: 随着大数据的兴起,Python 和机器学习迅速成为时代的宠儿。本书在内容编排上避免了枯燥的理论知识讲解,依循“理论简述——实际数据集——Python 程序实现算法”分析数据的思路,根据实际数据集的分析目的,采用合适的主流机器学习算法来解决问题。全书共12章,其中第1 ~ 4 章介绍了机器学习的基础知识;第5 ~ 12 章讨论了在面对不同的数据时,如何采用一些主流的算法来解决问题,主要包括回归分析、关联规则、无监督学习、文本LDA 模型、决策树和集成学习、朴素贝叶斯和K 近邻分类、支持向量机和神经网络,以及深 度学习入门等内容。针对每个算法,都给出Python 代码实现算法建模的过程,并结合可视化技术,帮助读者更好地理解算法和分析结果。 《Python 在机器学习中的应用》是使用Python 进行机器学习的入门实战教程,可作为以Python 为基础进行机器学习的本科生和研究生入门书籍,也可供对Python 机器学习感兴趣的研究人员参考阅读 资料目录: 第1 章 机器学习简介 1.1 机器学习的任务 1.2 机器学习的三种方式 1.3 机器学习系统的建立 1.4 机器学习实例 第2 章 Python 常用库介绍 2.1 Python 的安装(Anaconda) 2.1.1 Spyder 2.1.2 Jupyter Notebook 2.2 Python 常用库 2.2.1 Numpy 库 2.2.2 Pandas 库 2.2.3 Matplotlib 库 2.2.4 Statsmodels 库 2.2.5 Scikit-learn 库 2.3 其他Python 常用的数据库 2.4 Python 各种库在机器学习中的应用 第3 章 数据的准备和探索 3.1 数据预处理 3.2 数据假设检验 3.3 数据间的关系 3.4 数据可视化 3.5 特征提取和降维 第4 章 模型训练和评估 4.1 模型训练技巧 4.2 分类效果的评价 4.3 回归模型评价 4.4 聚类分析评估 第5 章 回归分析 5.1 回归分析简介 5.2 多元线性回归分析 5.2.1 多元线性回归 5.2.2 逐步回归 5.3 Lasso 回归分析 5.4 Logistic 回归分析 5.5 时间序列预测 第6 章 关联规则 6.1 关联规则简介 6.2 使用关联规则找到问卷的规则 6.3 关联规则可视化 第7 章 无监督学习 7.1 无监督学习介绍 7.2 系统聚类 7.3 K- 均值聚类 7.4 密度聚类 7.5 Mean Shift 聚类 7.6 字典学习图像去噪 第8 章 文本LDA 模型 8.1 文本分析简介 8.2 中文分词 8.3 LDA 主题模型分析《红楼梦》 8.4 红楼梦人物关系 第9 章 决策树和集成学习 9.1 模型简介 9.2 泰坦尼克号数据预处理 9.3 决策树模型 9.4 决策树剪枝 9.5 随机森林模型 9.6 AdaBoost 模型 第10 章 朴素贝叶斯和K近邻分类 10.1 模型简介 10.2 垃圾邮件数据预处理 10.3 贝叶斯模型识别垃圾邮件 10.4 基于异常值检测的垃圾邮件查找 10.4.1 PCA 异常值检测 10.4.2 Isolation Forest 异常值检测 10.5 数据不平衡问题的处理 10.6 K 近邻分类 第11 章 支持向量机和神经网络 11.1 模型简介 11.2 肺癌数据可视化 11.3 支持向量机模型 11.4 全连接神经网络 第12 章 深度学习入门 12.1 深度学习介绍 12.2 卷积和池化 12.3 CNN 人脸识别 12.4 CNN 人脸检测 12.5 深度卷积图像去噪 12.5.1 空洞卷积 12.5.2 图像与图像块的相互转换
12.5.3 一种深度学习去噪方法 |