Java知识分享网 - 轻松学习从此开始!    

Java知识分享网

Java1234官方群25:java1234官方群17
Java1234官方群25:838462530
        
SpringBoot+SpringSecurity+Vue+ElementPlus权限系统实战课程 震撼发布        

最新Java全栈就业实战课程(免费)

springcloud分布式电商秒杀实战课程

IDEA永久激活

66套java实战课程无套路领取

锋哥开始收Java学员啦!

Python学习路线图

锋哥开始收Java学员啦!
当前位置: 主页 > Java文档 > Java基础相关 >

智能搜索和推荐系统:原理 算法与应用 刘宇 PDF 下载


分享到:
时间:2022-04-01 08:57来源:http://www.java1234.com 作者:转载  侵权举报
本书分为4大部分。第一部分(第1~3章):搜索推荐系统的基础。首先介绍数学与统计学是现代机器学习理论的基础;其次介绍搜索推荐系统的常识;最后,描述知识图谱相关基础理论。
失效链接处理
智能搜索和推荐系统:原理 算法与应用 刘宇 PDF 下载

下载地址:
版权归出版社和原作者所有,链接已删除,请购买正版

用户下载说明:

电子版仅供预览,下载后24小时内务必删除,支持正版,喜欢的请购买正版书籍:
http://product.dangdang.com/1072748367.html


相关截图:


 
资料简介:

本书分为4大部分。第一部分(第1~3章):搜索推荐系统的基础。首先介绍数学与统计学是现代机器学习理论的基础;其次介绍搜索推荐系统的常识;最后,描述知识图谱相关基础理论。
第二部分(第4~6章):搜索系统的基本原理。主要内容包括:搜索系统框架及原理、主要算法以及搜索系统相关评价指标。
第三部分(第7~9章):推荐系统的基本原理。主要内容包括:推荐系统框架及原理、主要算法以及推荐系统相关评价指标。
第四部分(第10~12章):应用。首先介绍三种常见的搜索引擎工具;其次讲述搜索引擎和推荐系统两个方向的应用。

资料目录:

 推荐序一
推荐序二
前言
第一部分 搜索和推荐系统的基础
第1章 概率统计与应用数学基础知识 2
1.1 概率论基础 2
1.1.1 概率定义 2
1.1.2 随机变量 5
1.1.3 基础的概率分布 5
1.1.4 期望、方差、标准差、协方差 8
1.2 线性代数基础 10
1.2.1 矩阵 10
1.2.2 向量 10
1.2.3 张量 11
1.2.4 特征向量和特征值 12
1.2.5 奇异值分解 12
1.3 机器学习基础 13
1.3.1 导数 13
1.3.2 梯度 14
1.3.3 *似然估计 14
1.3.4 随机过程与隐马尔可夫模型 15
1.3.5 信息熵 16
1.4 本章小结 18
第2章 搜索系统和推荐系统常识 19
2.1 搜索系统 19
2.1.1 什么是搜索引擎及搜索系统 19
2.1.2 搜索引擎的发展史 21
2.1.3 搜索引擎的分类 22
2.2 推荐系统 23
2.2.1 什么是推荐系统 24
2.2.2 推荐系统的发展史 24
2.2.3 推荐系统应用场景 25
2.2.4 推荐系统的分类 26
2.3 搜索与推荐的区别 29
2.4 本章小结 30
第3章 知识图谱相关理论 31
3.1 知识图谱概述 31
3.1.1 什么是知识图谱 31
3.1.2 知识图谱的价值 33
3.1.3 知识图谱的架构 35
3.1.4 知识图谱的表示与建模 36
3.2 信息抽取 39
3.2.1 实体识别 40
3.2.2 关系抽取 46
3.3 知识融合 50
3.3.1 实体对齐 50
3.3.2 实体消歧 51
3.4 知识加工 53
3.4.1 知识推理 53
3.4.2 质量评估 58
3.5 本章小结 58
第二部分 搜索系统的基本原理
第4章 搜索系统框架及原理 60
4.1 搜索系统的框架 60
4.1.1 基本框架 60
4.1.2 搜索引擎是如何工作的 62
4.2 数据收集及预处理 64
4.2.1 爬虫 64
4.2.2 数据清洗 66
4.2.3 存储空间及分布式设计 68
4.3 文本分析 70
4.3.1 查询处理 71
4.3.2 意图理解 82
4.3.3 其他文本分析方法 85
4.4 基于知识图谱的搜索系统 90
4.5 本章小结 92
第5章 搜索系统中的主要算法 93
5.1 信息检索基本模型 93
5.1.1 布尔模型 93
5.1.2 向量空间模型 94
5.1.3 概率检索模型 96
5.1.4 其他模型 100
5.2 搜索和机器学习 102
5.2.1 排序学习 102
5.2.2 排序学习示例 107
5.3 搜索和深度学习 116
5.3.1 DNN模型 116
5.3.2 DSSM模型 118
5.3.3 Transformer 120
5.4 本章小结 126
第6章 搜索系统评价 127
6.1 搜索系统评价的意义 127
6.2 搜索系统的评价体系 127
6.2.1 效率评价 128
6.2.2 效果评价 130
6.3 本章小结 136
第三部分 推荐系统的基本原理
第7章 推荐系统框架及原理 138
7.1 推荐系统的框架及运行 138
7.1.1 基本框架 139
7.1.2 组件及功能 140
7.1.3 推荐引擎是如何工作的 141
7.1.4 推荐系统的经典问题 142
7.2 推荐系统的冷启动 145
7.3 推荐系统的召回策略 150
7.3.1 基于行为相似的召回 150
7.3.2 基于内容相似的召回 153
7.4 推荐系统排序 160
7.4.1 特征选择的方法 160
7.4.2 推荐系统的排序过程 164
7.5 基于知识图谱的推荐系统 166
7.6 本章小结 168
第8章 推荐系统的主要算法 169
8.1 矩阵分解 169
8.1.1 奇异值分解 170
8.1.2 交替最小二乘 171
8.1.3 贝叶斯个性化排序 172
8.2 线性模型 174
8.2.1 FM模型 175
8.2.2 FFM模型 176
8.3 树模型 177
8.3.1 决策树模型 177
8.3.2 集成算法模型 183
8.4 深度学习模型 191
8.4.1 Wide & Deep模型 191
8.4.2 Deep FM模型 197
8.5 本章小结 199
第9章 推荐系统的评价 200
9.1 推荐评估的目的 200
9.2 推荐系统的评价指标 200
9.2.1 RMSE和R方 204
9.2.2 MAP和MRR 204
9.2.3 其他相关指标 205
9.3 推荐系统的评估实验方法 206
9.3.1 离线评估 206
9.3.2 在线评估 209
9.3.3 主观评估 213
9.4 本章小结 217
第四部分 应用
第10章 搜索引擎工具 220
10.1 Lucene简介 220
10.1.1 Lucene的由来及现状 220
10.1.2 Lucene创建索引过程分析 223
10.1.3 Lucene的搜索过程解析 224
10.2 Solr简介 226
10.2.1 Solr特性 228
10.2.2 Solr的核心概念 228
10.2.3 Solr的核心功能 228
10.3 Elasticsearch简介 230
10.3.1 Elasticsearch的核心概念 230
10.3.2 Elasticsearch的核心功能 231
10.4 搜索引擎工具对比 232
10.5 本章小结 233
第11章 搜索应用实战:基于电商的搜索开发 234
11.1 电商搜索系统的架构设计 234
11.2 ES在搜索系统中的应用 236
11.3 NLP在搜索系统中的应用 237
11.4 商品数据排序算法研究 240
11.5 搜索排序的评价及优化 241
11.6 深度学习在搜索系统中的应用 243
11.7 电商搜索系统中的SEM 243
11.8 本章小结 246
第12章 推荐应用实战:基于广告平台的推荐 247
12.1 推荐系统的架构设计 247
12.2 推荐系统的召回和冷启动 249
12.3 ES在推荐系统中的应用 251
12.4 推荐系统中NLP的应用 252
12.5 推荐系统中粗排和精排 253
12.6 推荐系统的评价和优化 254
12.7 深度学习在推荐系统应用 255
12.8 本章小结 257
------分隔线----------------------------

锋哥公众号


锋哥微信


关注公众号
【Java资料站】
回复 666
获取 
66套java
从菜鸡到大神
项目实战课程

锋哥推荐