Java知识分享网 - 轻松学习从此开始!    

Java知识分享网

Java1234官方群25:java1234官方群17
Java1234官方群25:838462530
        
SpringBoot+SpringSecurity+Vue+ElementPlus权限系统实战课程 震撼发布        

最新Java全栈就业实战课程(免费)

springcloud分布式电商秒杀实战课程

IDEA永久激活

66套java实战课程无套路领取

锋哥开始收Java学员啦!

Python学习路线图

锋哥开始收Java学员啦!
当前位置: 主页 > Java文档 > Java基础相关 >

自然语言处理理论与实战 PDF 下载


分享到:
时间:2020-11-08 09:34来源:http://www.java1234.com 作者:转载  侵权举报
自然语言处理理论与实战 PDF 下载
失效链接处理
自然语言处理理论与实战 PDF 下载


本站整理下载:
版权归出版社和原作者所有,链接已删除,请购买正版
 
 
用户下载说明:
电子版仅供预览,下载后24小时内务必删除,支持正版,喜欢的请购买正版书籍:
http://product.dangdang.com/25305516.html
  
相关截图:


资料简介:
本书讲述自然语言处理重要的相关学科知识和理论基础,并介绍使用这些知识的应用和工具,以及如何在实际环境中使用它们。市面上出版的自然语言处理书籍不多,且大多数讨论的是其背后的深奥原理,很少涉及基础知识和编程实现。自然语言处理是一门多学科交叉的学科,初入门的读者难以把握知识的广度和宽度,尤其对侧重点不能全面掌握。本书针对以上情况,经过科学调研分析,选择以理论结合实例的方式呈现知识点。首先介绍开发工具、Python语言、线性代数、概率论、统计学、语言学等工程上常用的知识,然后介绍自然语言处理的核心理论和案例解析,最后通过几个综合性的例子完成自然语言处理的学习和深入。本书旨在帮助读者快速高效地学习自然语言处理和人工智能技术。

资料目录

第1 章基础入门
1.1 什么是自然语言处理
1.1.1 自然语言处理概述 
1.1.2 自然语言处理的发展历史 
1.1.3 自然语言处理的工作原理 
1.1.4 自然语言处理的应用前景 
1.2 开发工具与环境 
1.2.1 Sublime Text 和Anaconda 介绍 
1.2.2 开发环境的安装与配置 
1.3 实战:第一个小程序的诞生 
1.3.1 实例介绍 
1.3.2 源码实现 
第2 章快速上手Python
2.1 初识Python 编程语言 
2.1.1 Python 概述 
2.1.2 Python 能做什么 
2.1.3 Python 的语法和特点 
2.2 Python 进阶 
2.2.1 Hello World 
2.2.2 语句和控制流 
2.2.3 函数 
2.2.4 List 列表 
2.2.5 元组 
2.2.6 set 集合 
2.2.7 字典 
2.2.8 面向对象编程:类 
2.2.9 标准库 
2.3 Python 深入——第三方库 
2.3.1 Web 框架 
2.3.2 科学计算 
2.3.3 GUI 
2.3.4 其他库 
第3 章线性代数
3.1 线性代数介绍 
3.2 向量 
3.2.1 向量定义 
3.2.2 向量表示 
3.2.3 向量定理 
3.2.4 向量运算 
3.3 矩阵 
3.3.1 矩阵定义 
3.3.2 矩阵表示 
3.3.3 矩阵运算 
3.3.4 线性方程组 
3.3.5 行列式 
3.3.6 特征值和特征向量 
3.4 距离计算 
3.4.1 余弦距离 
3.4.2 欧氏距离 
3.4.3 曼哈顿距离 
3.4.4 明可夫斯基距离 
3.4.5 切比雪夫距离 
3.4.6 杰卡德距离 
3.4.7 汉明距离 
3.4.8 标准化欧式距离 
3.4.9 皮尔逊相关系数 
第4 章概率论
4.1 概率论介绍 
4.2 事件 
4.2.1 随机试验 
4.2.2 随机事件和样本空间 
4.2.3 事件的计算 
4.3 概率 
4.4 概率公理 
4.5 条件概率和全概率 
4.5.1 条件概率 
4.5.2 全概率 
4.6 贝叶斯定理 
4.7 信息论 
4.7.1 信息论的基本概念 
4.7.2 信息度量 
第5 章统计学 
5.1 图形可视化 
5.1.1 饼图 
5.1.2 条形图 
5.1.3 热力图 
5.1.4 折线图 
5.1.5 箱线图 
5.1.6 散点图 
5.1.7 雷达图 
5.1.8 仪表盘 
5.1.9 可视化图表用法 
5.2 数据度量标准 
5.2.1 平均值 
5.2.2 中位数 
5.2.3 众数 
5.2.4 期望 
5.2.5 方差 
5.2.6 标准差 
5.2.7 标准分 
5.3 概率分布 
5.3.1 几何分布 
5.3.2 二项分布 
5.3.3 正态分布 
5.3.4 泊松分布 
5.4 统计假设检验 
5.5 相关和回归 
5.5.1 相关 
5.5.2 回归 
5.5.3 相关和回归的联系 
第6 章语言学 
6.1 语音 
6.1.1 什么是语音 
6.1.2 语音的三大属性 
6.1.3 语音单位 
6.1.4 记音符号 
6.1.5 共时语流音变 
6.2 词汇 
6.2.1 什么是词汇 
6.2.2 词汇单位 
6.2.3 词的构造 
6.2.4 词义及其分类 
6.2.5 义项与义素 
6.2.6 语义场 
6.2.7 词汇的构成 
6.3 语法 
6.3.1 什么是语法 
6.3.2 词类 
6.3.3 短语 
6.3.4 单句 
6.3.5 复句 
第7 章自然语言处理
7.1 自然语言处理的任务和限制 
7.2 自然语言处理的主要技术范畴 
7.2.1 语音合成 
7.2.2 语音识别 
7.2.3 中文自动分词 
7.2.4 词性标注 
7.2.5 句法分析 
7.2.6 文本分类 
7.2.7 文本挖掘 
7.2.8 信息抽取 
7.2.9 问答系统 
7.2.10 机器翻译 
7.2.11 文本情感分析 
7.2.12 自动摘要 
7.2.13 文字蕴涵 
7.3 自然语言处理的难点 
7.3.1 语言环境复杂 
7.3.2 文本结构形式多样 
7.3.3 边界识别限制 
7.3.4 词义消歧 
7.3.5 指代消解 
7.4 自然语言处理展望 
第8 章语料库 
8.1 语料库浅谈 
8.2 语料库深入 
8.3 自然语言处理工具包:NLTK 
8.3.1 NLTK 简介 
8.3.2 安装NLTK 
8.3.3 使用NLTK 
8.3.4 在Python NLTK 下使用Stanford NLP 
8.4 获取语料库 
8.4.1 国内外著名语料库 
8.4.2 网络数据获取 
8.4.3 NLTK 获取语料库 
8.5 综合案例:走进大秦帝国 
8.5.1 数据采集和预处理 
8.5.2 构建本地语料库 
8.5.3 大秦帝国语料操作 
第9 章中文自动分词
9.1 中文分词简介 
9.2 中文分词的特点和难点 
9.3 常见中文分词方法 
9.4 典型中文分词工具 
9.4.1 HanLP 中文分词 
9.4.2 其他中文分词工具 
9.5 结巴中文分词 
9.5.1 基于Python 的结巴中文分词 
9.5.2 结巴分词工具详解 
9.5.3 结巴分词核心内容 
9.5.4 结巴分词基本用法 
第10 章数据预处理 
10.1 数据清洗 
10.2 分词处理 
10.3 特征构造 
10.4 特征降维与选择 
10.4.1 特征降维 
10.4.2 特征选择 
10.5 简单实例 
10.6 本章小结 
第11 章马尔可夫模型
11.1 马尔可夫链 
11.1.1 马尔可夫简介 
11.1.2 马尔可夫链的基本概念 
11.2 隐马尔可夫模型 
11.2.1 形式化描述 
11.2.2 数学形式描述 
11.3 向前算法解决HMM 似然度 
11.3.1 向前算法定义 
11.3.2 向前算法原理 
11.3.3 现实应用:预测成都天气的冷热 
11.4 文本序列标注案例:Viterbi 算法 

第12 章条件随机场 
12.1 条件随机场介绍 
12.2 简单易懂的条件随机场 
12.2.1 CRF 的形式化表示 
12.2.2 CRF 的公式化表示 
12.2.3 深度理解条件随机场 
第13 章模型评估
13.1 从统计角度介绍模型概念 
13.1.1 算法模型 
13.1.2 模型评估和模型选择 
13.1.3 过拟合与欠拟合的模型选择 
13.2 模型评估与选择 
13.2.1 模型评估的概念 
13.2.2 模型评估的评测指标 
13.2.3 以词性标注为例分析模型评估 
13.2.4 模型评估的几种方法 
13.3 ROC 曲线比较学习器模型 
第14 章命名实体识别
14.1 命名实体识别概述 
14.2 命名实体识别的特点与难点 
14.3 命名实体识别方法 
14.4 中文命名实体识别的核心技术 
14.5 展望 
第15 章自然语言处理实战
15.1 GitHub 数据提取与可视化分析 
15.1.1 了解GitHub 的API 
15.1.2 使用NetworkX 作图 
15.1.3 使用NetworkX 构建兴趣图 
15.1.4 NetWorkX 部分统计指标 
15.1.5 构建GitHub 的兴趣图 
15.1.6 可视化 
15.2 微博话题爬取与存储分析 
15.2.1 数据采集 
15.2.2 数据提取 
15.2.3 数据存储 
15.2.4 项目运行与分析 
附录A Python 与其他语言调用 
附录B Git 项目上传简易教程 
参考文献


 

------分隔线----------------------------

锋哥公众号


锋哥微信


关注公众号
【Java资料站】
回复 666
获取 
66套java
从菜鸡到大神
项目实战课程

锋哥推荐